
Measures of Precision



Overview
•How to quantify uncertainty

•Why variance is important

•Components of variation in distance sampling

•Controlling variance

•Estimating variance

• Analytic

• Bootstrap

•Confidence Intervals



How do estimates behave?

Consider an artificial  population
D = 500 per unit2 (no density gradient)

Design: 5 transects equally-spaced 
(w=0.05)

Results: 
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How do estimates behave?

Consider a duplicate survey
Same population model

Same survey design (with a new random 
start point)

Results: 
= 139

= 37.6
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How do estimates behave?

Imagine repeating this process over and over, using the same 
survey design and a population drawn from the same density 
model

Each survey will yield:

A different value for 

A different value for

A different value for D̂
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What happens if we repeat this simulated survey 10,000 times?

We end up with distributions for n , and 

How do estimates behave?

Note, ଵ
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How do estimates behave?

We are interested in the hypothetical long-run behaviour of our 
estimator

௡
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How variable are the estimates?
E.g. what is the variance of the distribution for ?

What is the average value of the estimates?
E.g. is the distribution for centred on the truth?



Quantifying uncertainty

Different ways of measuring uncertainty:

1. Variance = the average squared difference from the mean (the inverse of precision)

If the estimator for D is unbiased, then

2. Standard error = the standard deviation of an estimator (i.e. the square root of 
estimator variance)
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Quantifying uncertainty

3. Coefficient of Variation (CV) = the standard error divided by the mean (i.e. a standardised 
version of the standard error) 

Useful for comparing variances when the scale and/or the units of measurement differ

E.g. consider two variables: X has mean = 100 and variance = 400, 
Y has mean = 1 and variance = 0.04
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Quantifying uncertainty

4. Confidence Interval (CI) = a range of plausible values for the truth

Calculations are based on variance

Different ways to calculate CIs, depending on the data, e.g.
Normal

Lognormal (available in Distance)

Bootstrap (available in Distance)

More about CIs later…



Why is variance important?

•In a real survey, we use an estimator and the survey data to produce a single 
estimate for D
•If the estimator variance is low, then individual estimates are more likely to be 
close to the truth (assuming low bias)
•If estimator variance is high, then individual estimates are more likely to be far 
from the truth
•For reliable results, we want estimators with LOW variance (and low bias!)



We can break down the familiar distance sampling density estimator (for 
line transects with no clusters) into three components:

ೌ ೌ

Variance by components

Constant 
(no variance)

Detection function

Encounter rate



We can calculate variance measures separately for each component

Variance by components

Mean 26.1 38.5 500.6

Se 2.27 2.71 56.34

CV 8.69 % 7.04 % 11.26 %

D̂Ln /



•The variance of  is affected by the variance of its components
• If the variance of is high, 
• then the variance of ௡

௅
will be high and 

• the variance of will be high

• If the variance of  is high 
• then the variance of will be high

•For reliable estimates, 

• we want and   to be low

Variance by components



Variance by components
Distance provides several variance measures for each component

Estimate          SE         CV
Average p             0.3491863  0.02160949 0.06188528
N in covered region 300.6991117 30.11200030 0.10013997

Summary statistics:
Region Area CoveredArea Effort   n  k     ER     se.ER     cv.ER

1 Default    1      3436.8     48 105 12 2.1875 0.3169604 0.1448962

Abundance:
Label   Estimate         se        cv        lcl ucl df

1 Total   8.749392   1.378541 0.1575585   6.270328  12.20859 15.32522

Density:
Label   Estimate         se        cv        lcl ucl df

1 Total 0.08749392 0.01378541 0.1575585 0.06270328 0.1220859 15.32522



Controlling variance

• We can use this knowledge of encounter rate variance to help design good 
surveys

• Three main ways we can reduce encounter rate variance:

• Use systematic survey designs

• Run transects parallel to density gradients

• Use designs with multiple transects 



Estimating variance – Analytic

We can describe the relationship between the variance of     and the 
variance of its components more formally using a useful approximation 
known as the Delta method

Rule: when two or more components are multiplied together, squared CVs 
add

D̂



Estimating variance – Analytic

We can check this approximation works using the results of our simulation,
ଶ ଶ
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We can rearrange the squared CV to get an estimate of the variance

ଶ ଶ

Mean 26.1 38.5 500.6

Se 2.27 2.71 56.34

CV 8.69 % 7.04 % 11.26 %



Estimating variance – Analytic

• To estimate  we need to use data from the individual lines (or points)

• A minimum of 20 replicate lines (or points) is recommended for obtaining a 
reliable estimate of encounter rate variance

• The formula used in Distance:

li = effort for 
line i

ni = count 
for line i

k = number 
of lines



Estimating variance – Analytic
Estimate          SE         CV

Average p             0.3491863  0.02160949 0.06188528
N in covered region 300.6991117 30.11200030 0.10013997

Summary statistics:
Region Area CoveredArea Effort   n  k     ER     se.ER     cv.ER

1 Default    1      3436.8     48 105 12 2.1875 0.3169604 0.1448962

Abundance:
Label   Estimate         se        cv        lcl ucl df

1 Total   8.749392   1.378541 0.1575585   6.270328  12.20859 15.32522

Density:
Label   Estimate         se        cv        lcl ucl df

1 Total 0.08749392 0.01378541 0.1575585 0.06270328 0.1220859 15.32522

Component percentages of variance:
.Label Detection    ER
Total     15.43 84.57

Abundance and 
Density always have 
the same CV



Estimating variance – Analytic
Estimate          SE         CV

Average p             0.3491863  0.02160949 0.06188528
N in covered region 300.6991117 30.11200030 0.10013997

Summary statistics:
Region Area CoveredArea Effort   n  k     ER     se.ER     cv.ER

1 Default    1      3436.8     48 105 12 2.1875 0.3169604 0.1448962

Abundance:
Label   Estimate         se        cv        lcl ucl df

1 Total   8.749392   1.378541 0.1575585   6.270328  12.20859 15.32522

Density:
Label   Estimate         se        cv        lcl ucl df

1 Total 0.08749392 0.01378541 0.1575585 0.06270328 0.1220859 15.32522

Component percentages of variance:
.Label Detection    ER
Total     15.43 84.57
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Estimating variance – Analytic

To find the relative contributions of each component we take the ratio of 
squared CVs

E.g. ೌ
మ

మ

Component

Typical values

Line Point

Encounter rate 70-80% 40-50%

Detection function <30% >50%

The percentage relative 
contribution made by ௔



Estimating variance – Bootstrap

• Works well if the original sample is large and representative

• The distribution of density estimates approximates the true distribution that 
we would (theoretically) get from duplicate surveys

• The variance of the bootstrap estimates can be used as an estimate of the 
true variance

• In Distance we resample the individual transects



Estimating variance – Bootstrap

• For example, consider a survey with 12 replicate lines
• Bootstrap sample 1:

• Transects: 5, 12, 1, 7, 6, 11, 7, 6, 9, 7, 11, 2
• Density estimate = D1

• Bootstrap sample 2:
• Transects: 3, 4, 9, 1, 12, 7, 8, 11, 1, 3, 2, 12
• Density estimate = D2

• Do this B times and use the variance of the B density estimates as an 
estimate of 



Estimating variance – Bootstrap

Basic function to generate a bootstrap:

bootdht(model, flatfile, nboot, summary_fun)

model – detection function model

flatfile – data object used to fit model

summary_fun – function to harvest required statistic from each bootstrap sample

nboot – the number of bootstrap samples to use 



Confidence Intervals

• Confidence intervals (CIs) give us a range of plausible values for the truth

• Constructed using data from a single sample

• If we were to carry out multiple surveys and construct 95% CIs from each 
survey, we would expect 95% of those CIs to contain the true value

• To calculate CIs, it would be beneficial to know the shape of the distribution 
of estimates



Confidence Intervals - Analytic

• Two choices:
• Normal
• symmetrical 
• easy to use
• allows negative values

• Lognormal
• asymmetric (skewed) 
• trickier to use
• typically higher interval limits
• does not allows negative values



Confidence Intervals - Analytic

Distance uses 95% lognormal CIs

Abundance:
Label Estimate           se        cv      lcl ucl df

1 Total 8.749392     1.378541 0.1575585 6.270328   12.20859 15.32522

Density:
Label   Estimate         se        cv        lcl ucl df

1 Total 0.08749392 0.01378541 0.1575585 0.06270328 0.1220859 15.32522

ଶ



Confidence Intervals – Bootstrap

The nonparametric option is provided in Distance
Bootstrap results

Boostraps : 999 
Successes          : 999 
Failures           : 0 

Estimate   se   ucl lcl cv
N     8.58 1.44 11.67 5.94 0.17
D     0.09 0.01  0.12 0.06 0.17

Standard error divided 
by the mean



Further reading about precision
• Section 3.6 of Buckland et al. (2001) Introduction to Distance Sampling

• Fewster et al. (2009) Estimating the encounter rate variance in distance sampling.  
Biometrics 65: 225-236.

• Sections 6.3.1.2 and 6.3.2.2 of Buckland et al. (2015) Distance Sampling: Methods 
and Applications.



Producing a better estimate of variance when 
systematic samplers are used

• Fewster, RM, Buckland, ST, Burnham, KP, Borchers, DL, Jupp, PE, Laake, JL, and Thomas, L.  
2009. Estimating the encounter rate in distance sampling. Biometrics 65: 225-236.



Systematic samples
Problem:

Systematic 
designs give the 
best variance, 
but the worst 
variance 
estimation! Estimates of encounter 

rate variance assume 
random lines

But it is better (lower 
variance) to use 
systematic lines

No unbiased estimator exists for estimating variance from a single systematic sample

Systematic designs are best, but 
we might overestimate the 

variance.
Use stratification to improve 

variance estimation for 
systematic designs



Systematic samples advice

Variance estimation based on random lines will not be perfect, 
but adequate

Usually, do nothing!
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If there are strong trends, variance might be significantly overestimated

High density on 
short lines

Low density on 
long lines

Worst 
case!



Post-stratification can give much better variance estimates

Group lines into 
small strata

Two lines per stratum, or at 
most three 



In Distance:

The encounter rate variance can be specified in the dht2 function with the 
er_est argument 

dht2(model, flatfile, er_est)

• The options follow the notation used in Fewster et al. (2009)
• The default is er_est=“R2” – random line placement with unequal line length
• For systematic estimators, successive pairs of lines will be grouped together, according to 

the Sample.Label and so labels should be numeric (e.g. lines 1 and 2 grouped)
• If there are an odd number of lines, the last 3 will be grouped



Post-stratification can give much better estimates of variance

Trends within strata are minor; 
Estimate encounter rate variance 

separately for each stratum
Pool by-stratum 

variance estimates 
together, weighted by 
Total Effort in Stratum
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Option is er_est=“S2”



Overlapping strata are even better, as you get a larger sample size of 
post-strata

Option is er_est=“O2”



Point transect surveys

Default (and only) option is er_est=“P2”


